Example 29.4. Electric Force Between an Electron and a Proton.
An electron an proton are separated by a distance of one Bohr radius, which is \(5.3 \times 10^{−11}\text{ m}\text{.}\)
(a) What is the magnitude of the electric force between them?
(b) What are the magnitudes of accelerations of electron and proton?
Data: \(e = 1.60 \times 10^{-19}\text{ C}\text{,}\) \(m_e = 9.11 \times 10^{-31}\text{ kg}\text{,}\) \(m_p = 1.67 \times 10^{-27}\text{ kg}\text{.}\)
Answer.
(a) \(8.2 \times 10^{-8}\text{ N}\text{.}\) (b) \(9.0 \times 10^{22}\text{ m/s}^2\text{,}\) \(4.91 \times 10^{19}\text{ m/s}^2\text{.}\)
Solution 1. (a)
We will use the formula for the magnitude of the Coulomb force. Note that we strip the sign when we just need the magnitude.
\begin{align*}
F_e \amp = k \dfrac{q_1 q_2}{r^2}\\
\amp = 9 \times 10^9 \dfrac{1.60 \times 10^{-19} \times 1.60 \times 10^{-19}}{(5.3 \times 10^{−11})^2}\\
\amp = 8.2 \times 10^{-8}\text{ N}.
\end{align*}
Solution 2. (b)
Dividing force by their masses will give us the magnitude of their accelerations.
\begin{align*}
a_e \amp = \frac{8.2 \times 10^{-8}\text{ N}}{9.11 \times 10^{-31}\text{ kg}} = 9.0 \times 10^{22}\text{ m/s}^2.\\
a_p \amp = \frac{8.2 \times 10^{-8}\text{ N}}{1.67 \times 10^{-27}\text{ kg} } = 4.91 \times 10^{19}\text{ m/s}^2.
\end{align*}