1. Practice Gradients.
Calculate the gradient of the following scalar fields: (a) \(f = x + y+ z\text{,}\) (b) \(f = xyz\text{,}\) (c) \(f = \frac{{\displaystyle1}}{{\displaystyle\sqrt{x^2+y^2+z^2}}}\text{,}\) (d) \(f = \ln \left(\sqrt{x^2+y^2} \right)\text{.}\)
Answer.
(b) \(yz \hat u_x + zx\hat u_y + xy \hat u_z\text{.}\)
Solution.
Let \(r = \sqrt{x^2+y^2+z^2}\) and \(\rho=\sqrt{x^2+y^2}\text{.}\)
\begin{align*}
\text{(a)}\quad \vec \nabla f \amp = \hat u_x + \hat u_y + \hat u_z.\\
\text{(b)}\quad \vec \nabla f \amp = yz\hat u_x + zx\hat u_y + xy\hat u_z.\\
\text{(c)}\quad \vec \nabla f \amp = \frac{x}{r^3}\:\hat u_x + \frac{y}{r^3}\:\hat u_y + \frac{z}{r^3}\:\hat u_z.\\
\text{(d)}\quad \vec \nabla f \amp = \frac{x}{\rho^2}\:\hat u_x + \frac{y}{\rho^2}\:\hat u_y.
\end{align*}