1. Practice Fermat Principle 1.
What should be the value of \(a\) so that the integration of the following functions from \(x = 0\) to \(x = 1\) will be minimum. (a) \(f(x) = a^2 x^3 - a x\text{,}\) (b) \(f(x) = a^4 x^3 - a^2 x\text{.}\)
Answer.
(a) \(a\) = 1; max.; (b) \(a\) = -1, min; \(a\) =0 max; \(a\) = 1 max.
Solution 1. a
Let us call the integral of \(f(x)\) by \(g(a)\text{.}\)
\begin{equation*}
g(a) = \int_0^1 f(x)\: dx = \int_0^1 (a^2 x^3 - a x)\: dx = \dfrac{a^2}{4} - \dfrac{a}{2}.
\end{equation*}
To find the extrema of \(g(a)\) we will set the first derivative of \(g(a)\) to zero.
\begin{equation*}
\dfrac{dg}{da} = 0,\ \ \Longrightarrow\ \ \dfrac{a}{2} - \dfrac{1}{2} = 0,\ \ \Longrightarrow\ \ a = 1.
\end{equation*}
Does \(a=1\) correspond to max or min for the function \(g(a)\text{?}\) We check with the second derivative.
\begin{equation*}
\left.\dfrac{d^2g}{da^2}\right|_{a=1} = \dfrac{1}{2}>0,\ \ \Longrightarrow\ \ g(a)\ \textrm{minimum at } a = 1.
\end{equation*}
Solution 2. b
\begin{equation*}
g(a) = \int_0^1 f(x)\: dx = \dfrac{a^4}{4} - \dfrac{a^2}{2}.
\end{equation*}
To find the extrema of \(g(a)\) we will set the first derivative of \(g(a)\) to zero.
\begin{equation*}
\dfrac{dg}{da} = 0,\ \ \Longrightarrow\ \ a^3 - a = 0,\ \ \Longrightarrow\ \ a = -1,0,1.
\end{equation*}
Let us find which one of \(a= -1, 0, 1\) correspond to max or min for the function \(g(a)\text{?}\) We check with the second derivative.
\begin{equation*}
\dfrac{d^2g}{da^2} = 3a^2 -1,
\end{equation*}
which gives the following for \(a= -1, 0, 1\)
\begin{align*}
\amp \left.\dfrac{d^2g}{da^2}\right|_{a=0} = -1,\ \Longrightarrow\ \ a = 0 \ \textrm{is max}.\\
\amp \left.\dfrac{d^2g}{da^2}\right|_{a=\pm 1} = 2,\ \Longrightarrow\ \ a = -1\ \textrm{and}\ a = 1 \ \textrm{are min}.
\end{align*}