1. Rotation of Reflected Light upon Rotation of Mirror.
A ray of light PO is incident on a plane mirror M1 as shown in Figure 43.24. If the mirror is rotated to a new orientation M2, the reflected ray rotates from \(\text{OR}_1\) to \(\text{OR}_2\text{.}\) Find the relation between the angle of rotation of the mirror \(\angle\text{M}_1\text{OM}_2\) and the angle \(\angle\text{R}_1\text{OR}_2\text{.}\)

Hint.
Answer.
\(\phi = 2\theta\text{.}\)
Solution.
From the figure
\begin{align*}
\amp \angle \text{PON}_1 = \angle \text{N}_1\text{OR}_1 = 90^{\circ}-\angle \text{R}_1\text{OM}_1, \\
\amp \angle \text{PON}_2 = \angle \text{N}_2\text{OR}_2 = 90^{\circ}-\angle \text{R}_2\text{OM}_2.
\end{align*}
Therefore,
\begin{align*}
\angle \text{PON}_1 - \angle \text{PON}_2 \amp = \angle \text{R}_2\text{OM}_2 - \angle \text{R}_1\text{OM}_1,\\
\amp = \angle \text{R}_2\text{OR}_1 + \angle \text{R}_1\text{OM}_2 -(\angle \text{R}_1\text{OM}_2 + \angle \text{M}_2\text{OM}_1),\\
\amp = \angle \text{R}_2\text{OR}_1 - \angle \text{M}_2\text{OM}_1 = \phi - \theta. \ \ \ \ \ \ (1)
\end{align*}
We also have
\begin{align*}
\amp
\angle \text{PON}_1 = 90^{\circ}-\angle \text{P}\text{OM}_1^{\prime},\\
\amp
\angle \text{PON}_2 = 90^{\circ}-\angle \text{P}\text{OM}_2^{\prime}.
\end{align*}
These give
\begin{equation*}
\angle \text{PON}_1 - \angle \text{PON}_2 = \angle \text{P}\text{OM}_2^{\prime}-\angle \text{P}\text{OM}_1^{\prime} = \theta.\ \ \ \ \ \ (2)
\end{equation*}
From (1) and (2) we get
\begin{equation*}
\phi - \theta = \theta,\ \ \ \Longrightarrow\ \ \ \phi = 2\theta.
\end{equation*}