What is the de Broglie wavelength of an electron moving at \(1.0\times 10^{5}\:\textrm{m/s}\text{?}\)
Hint.
Use momentum.
Answer.
\(7.3\:\textrm{nm}\text{.}\)
Solution.
First we need to decide if we will use the relativistic formula or the non-relativistic formula for calculating the momentum. Here we have \(v/c = 0.33\times 10^{-3}\text{,}\) which is much very small compared to \(1\text{.}\) Therefore, we will use the non-relativistic formula.
\begin{equation*}
p = m v = 9.1\times 10^{-31}\:\textrm{kg} \times 1.0\times 10^{5}\:\textrm{m/s} = 9.1\times 10^{-26}\:\textrm{kg.m/s}.
\end{equation*}
Therefore, the wavelength of the electron will be
\begin{equation*}
\lambda = \dfrac{h}{p} = \dfrac{6.63\times10^{-34}\textrm{J.s}}{9.1\times 10^{-26}\:\textrm{kg.m/s}} = 7.3\:\textrm{nm}.
\end{equation*}