Example 27.6. Average Speed and RMS Speed of a Nitrogen Molecule.
Find (a) the average speed and (b) the root-mean squared speed of molecules of nitrogen gas treated as an ideal gas at room temperature \(27^{\circ}\text{C}\text{.}\)
Data: Avogadro’s number, \(N_A = 6.022\times 10^{23}\text{,}\) Boltzmann’s constant, \(k_B = 1.38\times 10^{-23} \text{m}^2\text{kg}\text{s}^{-2}\text{K}^{-1}\text{.}\)
Answer.
(a) \(494\text{ m/s} \text{,}\) (b) \(692\text{ m/s}\text{.}\)
Solution 1. a
The average speed in molar units is
\begin{equation*}
v_\text{ave} = \sqrt{\dfrac{8 k_B T}{\pi m}}.
\end{equation*}
Here the numbers are
\begin{align*}
\amp T = 273+27=300K.\\
\amp m = \dfrac{ 28\times 10^{-3}\text{ kg}}{6.022\times 10^{23} } = 4.32 \times 10^{-26}\text{ kg}.
\end{align*}
Using these numbers we get
\begin{equation*}
v_\text{ave} = 494\text{ m/s}.
\end{equation*}
Solution 2. b
For a diatomic molecular gas, the RMS speed from kinetic energy formula is given by
\begin{equation*}
v_\text{rms} = \sqrt{\dfrac{5k_B T}{m}} = 692\text{ m/s}.
\end{equation*}