Example 10.25. Moment of Inertia of a Dumbbell.
We want to find moment of inertia of a dumbbell with respect to two different coordinate systems shown in Figure 10.26. Find all nine moments of inertia in \(Oxyz\) and \(Ox'y'z'\text{.}\)

Answer.
See solution.
Solution.
We need coordinates of the two masses in the two systems. From Figure 10.26, we read off the following for the mass (say 1) on the right.
\begin{gather*}
x_1 = l\cos\theta,\ \ y_1 = l \sin\theta,\ \ z_1 = 0\\
x'_1 = l,\ \ y'_1 = 0,\ \ z'_1 = 0
\end{gather*}
The coordinates of the other particle are negative of these values. Therefore, we get the following moments of inertia in \(Oxyz\text{.}\)
\begin{align*}
\amp I_{xx} = 2m l^2 \sin^2\theta,\ \ I_{yy} = 2m l^2 \cos^2\theta,\ \ I_{zz} = 2m l^2,\\
\amp I_{xy} = -2m l^2 \sin\theta\,\cos\theta,\ \ I_{xz} = 0,\ \ I_{yz} = 0.
\end{align*}
Organizing this in matrix we have the following in \(Oxyz\text{.}\)
\begin{equation*}
{\bf I} =
\begin{pmatrix}
2m l^2 \sin^2\theta \amp -2m l^2 \sin\theta\,\cos\theta \amp 0\\
-2m l^2 \sin\theta\,\cos\theta \amp 2m l^2 \cos^2\theta \amp 0\\
0 \amp 0 \amp 2m l^2
\end{pmatrix}
\end{equation*}
In \(Ox'y'z'\text{,}\) we will get
\begin{align*}
\amp I_{x'x'} = 0,\ \ I_{y'y'} = 2m l^2,\ \ I_{z'z'} = 2m l^2,\\
\amp I_{x'y'} = 0,\ \ I_{x'z'} = 0,\ \ I_{y'z'} = 0.
\end{align*}
Organizing this in matrix we have the following in \(Ox'y'z'\text{.}\)
\begin{equation*}
{\bf I'} =
\begin{pmatrix}
0 \amp 0 \amp 0\\
0 \amp 2m l^2 \amp 0\\
0 \amp 0 \amp 2m l^2
\end{pmatrix}
\end{equation*}