Example 18.31. Determining if a Flow is Turbulent.
Determine which of the following flows will be turbulent. (a) mercury flowing at \(20^{\circ}C\) through a tube of inner radius 1 cm and length of 1 m carrying 30 liters per hour, (b) water flowing in the same tube at the same volume rate, and (c) olive oil flowing in the same tube at the same volume rate.
Answer.
(a) turbulent; (b) not turbulent; (c) not turbulent.
Solution.
The Reynold number (Re) is used to decide on whether a flow is turbulent or not. For a flow through a tube of diameter \(D = 2R\) with \(R\) the radius, the Re is given by
\begin{equation*}
\textrm{Re} = \frac{\rho v D}{\eta},
\end{equation*}
where \(\rho\) is the density, \(v\) is the speed of flow, and \(\eta\) is the coefficient of viscosity. The only difference in the three parts is the ratio \(\rho/\eta\text{.}\) So, we calculate the rest first.
\begin{align*}
\amp R = 1 \ \textrm{cm}\\
\amp v = \frac{30\ \textrm{L/h}}{\pi (1\ \textrm{cm})^2}
\end{align*}
We need to convert units so that \(v\) would come out in m/s.
\begin{equation*}
30\ \textrm{L/h} = \frac{30\times 10^{-3}}{3600}\textrm{m}^3/\textrm{s} = 8.33\times 10^{-6}\textrm{m}^3/\textrm{s}.
\end{equation*}
\begin{equation*}
A = \pi (1\ \textrm{cm})^2 = 3.14\times 10^{-4}\ \textrm{m}^2.
\end{equation*}
Therefore
\begin{equation*}
v = \frac{ 8.33\times 10^{-6}\textrm{m}^3/\textrm{s}}{3.14\times 10^{-4}\ \textrm{m}^2} = 2.65\times 10^{-2}\ \textrm{m/s},
\end{equation*}
and
\begin{equation*}
v D = 5.3\times 10^{-4}\ \textrm{m}^2/\textrm{s}
\end{equation*}
These calculations give
\begin{equation*}
\textrm{Re} = \left[5.3\times 10^{-4}\ \textrm{m}^2/\textrm{s} \right]\ \frac{\rho}{\eta},
\end{equation*}
Now for the parts of the question.
- \(\rho = 13,600\,\text{kg/m}^3\text{,}\) \(\eta = 1.554\times 10^{-3}\) Pa.s. Therefore,\begin{equation*} \textrm{Re} = \left[5.3\times 10^{-4}\ \textrm{m}^2/\textrm{s} \right]\ \frac{13,600\ \textrm{kg/m}^3}{1.554\times 10^{-3} \ \textrm{Pa.s}} = 4,640. \end{equation*}Since \(\text{Re} \gt 2000\text{,}\) the flow is turbulent.
- \(\rho = 1000\,\text{kg/m}^3\text{,}\) \(\eta = 1.002\times 10^{-3}\) Pa.s. Therefore,\begin{equation*} \textrm{Re} = \left[5.3\times 10^{-4}\ \textrm{m}^2/\textrm{s} \right]\ \frac{1000\ \textrm{kg/m}^3}{1.002\times 10^{-3} \ \textrm{Pa.s}} = 528. \end{equation*}Since \(\text{Re} \lt 2000\text{,}\) the flow is not turbulent.
- \(\rho = 920\, \text{kg/m}^3\text{,}\) \(\eta = 84\times 10^{-3}\) Pa.s. Therefore,\begin{equation*} \textrm{Re} = \left[5.3\times 10^{-4}\ \textrm{m}^2/\textrm{s} \right]\ \frac{920\ \textrm{kg/m}^3}{84\times 10^{-3} \ \textrm{Pa.s}} = 5.8. \end{equation*}Since \(\text{Re} \lt 2000\text{,}\) the flow is not turbulent.