Example 16.31. Strain Energy in Stretched Cable.
A \(100\text{-kg}\) steel ball is hung from a high ceiling using a \(8\text{-m}\) long steel cable of diameter \(4.0\text{mm}\text{.}\) How much elastic energy is stored in the cable? Data: Young’s modulus of steel = \(220\text{ GPa}\text{.}\)
Answer.
\(1.39\text{ J} \text{.}\)
Solution.
First we find the strain \(\Delta L/L\) by Hooke’s law. For that we need to work out stress, for which we need the area of cross-section.
\begin{gather*}
A = \pi R^2 = \pi \times \left( 2\times 10^{-3} \right)^2 = 1.25\times 10^{-5}\text{ m}^2 \\
F = mg = 100\times 9.81 = 981\text{ N}
\end{gather*}
Therefore, stress in the cable is
\begin{equation*}
\text{Stress } = \dfrac{F}{A} = 7.8\times 10^7\text{ N/m}^2.
\end{equation*}
Using \(Y = 220\text{ GPa} = 220\times 10^9\text{ Pa}\text{,}\) we can get the strain caused in the cable.
\begin{equation*}
\dfrac{\Delta L}{L} = \dfrac{1}{Y} \dfrac{F}{A} = 3.55\times 10^{-4}.
\end{equation*}
Therefore, the tensile energy stored in the cable is
\begin{align*}
U \amp = \dfrac{1}{2} YV\left( \dfrac{\Delta L}{L} \right)^2,\\
\amp = \dfrac{1}{2} 220\times 10^9 \times 1.25\times 10^{-5} \times 8\times \left( 3.55\times 10^{-4} \right)^2 = 1.39\text{ J}.
\end{align*}