Example 12.6. Gravitational Force Between Spherical Bodies.
Evaluate the gravitational force in the following situations:
(a) between two 5-kg spherical steel balls separated by a center-to-center distance of \(15\text{ cm}\text{,}\) and,
(b) the Sun and the planet Neptune which have an average separation of \(30.15\text{ AU}\text{.}\) \(M_\text{Sun} \approx 2.0\times 10^{30}\text{ kg}\text{,}\) \(M_\text{Neptune} \approx 1.0\times 10^{26}\text{ kg}\) and \(1\text{ AU} = 1.496\times 10^8\text{ km}\text{.}\)
Hint.
(a) and (b) : Use formulas for spherical bodies.
Answer.
(a) \(7.41\times 10^{-8}\text{ N}\text{,}\) (b) \(6.56\times 10^{20}\text{ N}\text{.}\)
Solution.
(a) We use the formulas given.
\begin{align*}
F \amp = G_N \dfrac{m_1 m_2}{r^2},\\
\amp = 6.67\times 10^{-11} \dfrac{ 5\times 5}{0.15^2} = 7.41\times 10^{-8}\text{ N}.
\end{align*}
(b) We use the formulas given.
\begin{align*}
F \amp = G_N \dfrac{m_1 m_2}{r^2},\\
\amp = 6.67\times 10^{-11} \dfrac{2.0\times 10^{30}\times 1.0\times 10^{26}}{(30.15\times 1.496\times 10^8\times 10^3)^2}, \\
\amp = 6.56\times 10^{20}\text{ N}.
\end{align*}