Suppose a hydrogen atom has been somehow excited to \(n=3\) state from which the atom makes a transition to the \(n=1\) state accompanied by a release of a photon. What will be the energy, wavelength, and frequency of the light emitted?
Hint.
Use \(E=hf\) to connect to light emitted.
Answer.
\(12.1\:\textrm{eV}\text{,}\) \(1.027\times 10^{-7}\:\textrm{m}\text{,}\) \(2.92 \times 10^{15}\: \textrm{Hz}\text{.}\)
Solution.
\begin{equation*}
E = E_1\: \left(\dfrac{1}{1^2} - \dfrac{1}{3^2}\right) = \frac{8}{9}\: E_1,
\end{equation*}
where \(E_1 = 13.61\text{ eV}\text{.}\)
\begin{equation*}
E = \frac{8}{9}\times 13.61\:\textrm{eV} = 12.1\:\textrm{eV} .
\end{equation*}
The frequency of the photon will be
\begin{equation*}
f = \frac{E}{h} = \frac{12.1\:\textrm{eV}}{4.14 \times 10^{-15}\: \textrm{eV s}} = 2.92 \times 10^{15}\: \textrm{Hz}.
\end{equation*}
The wavelength will be
\begin{equation*}
\lambda = \frac{c}{f} = \frac{3\times 10^{8}\:\textrm{m/s}}{2.92 \times 10^{15}\: \textrm{Hz}} = 1.027\times 10^{-7}\:\textrm{m}.
\end{equation*}