(a) Frequency, \(f = 0.5\times 10^{15}\:\textrm{Hz}\text{.}\)
(b) Wavelength of the light in glass, \(\lambda = (c/1.6)/f = 3.75\times 10^{-7}\:\textrm{m}\text{.}\) The same light will have the wavelength \(= 6\times 10^{-7}\:\textrm{m}\) in vacuum.
(c) The speed of the light in the glass, \(v = \dfrac{c}{1.6} = 1.88\times 10^{8}\:\textrm{m/s}\text{.}\)
(d) The refractive index of glass \(= 1.6\text{.}\)
(e) The intensity, \(I = \dfrac{1}{2}v\:\epsilon\:E_0^2\text{.}\) Here \(v = 1.88\times 10^{8}\:\textrm{m/s}\text{,}\) \(\epsilon = \epsilon_0\times \epsilon_r = \epsilon_0\times \sqrt{n} = 1.12\times10^{-11}\:\textrm{C}^2\textrm{/N.m}^2\text{,}\) and \(E_0 = 3\times 10^{-6}\ \textrm{N/C}\text{.}\) Therefore, \(I = 9.4752\times 10^{-15}\text{W/m}^2\text{.}\)