Find the mean free path of an electron in gold using quantum gas formulas.
Hint.
Get \(v_F\) from Fermi energy.
Answer.
\(34.6 \: \textrm{nm}\text{.}\)
Solution.
Gold has Fermi energy \(5.53 \text{ eV}\text{.}\) This gives the following for the Fermi speed \(v_F\text{.}\)
\begin{equation*}
v_F = c\sqrt{2E_F/mc^2} = c\: \sqrt{\frac{2\times 5.53\: \textrm{eV} }{0.511\:\textrm{MeV}}} = 1.40\times 10^6\:\textrm{m/s}.
\end{equation*}
Assuming that each gold atom contributes one electron to the conduction, we can readily calculate the density of conduction electrons from the density of gold \((19.32 \text{ g/cm}^3)\) and atomic weight \((197 \text{ g})\) with the result
\begin{equation*}
n = 5.90 \times 10^{28}\:\textrm{electrons/m}^3.
\end{equation*}
Putting numerical values in Eq. (53.15) we get the following for the mean free path.
\begin{align*}
\lambda \amp = \frac{9.1\times 10^{-31}\:\textrm{kg} \times 1.40\times 10^6\:\textrm{m/s}\times 4.10\times 10^7\:\Omega^{-1}\textrm{m}^{-1}}{5.90 \times 10^{28}\:\textrm{electrons/m}^3 \times (1.6\times 10^{-19}\:\textrm{C})^2}\\
\amp = 3.46\times10^{-8}\:\textrm{m} = 34.6 \: \textrm{nm}.
\end{align*}
Assuming the inter-atomic distance between gold atoms to be \(0.30 \text{ nm}\text{,}\) the mean free path here is about 115 times longer than expected in the classical Drude model.