The energy produced by passing the current is given by
\begin{equation*}
E = I^2 R \Delta t = (5\ \textrm{A})^2 \times (2\ \Omega)\times 10\ \textrm{s} = 500\ \textrm{J}.
\end{equation*}
This energy will go towards raising the temperature of the wire and the copper cylinder. Assuming negligible mass for the wires themselves we ignore the energy into the wires. This gives
\begin{equation*}
m_{Cu} c \Delta T = 500\ \textrm{J}.
\end{equation*}
Given the mass of the cylinder and the change in the temperature, the specific heat of copper is found to be
\begin{equation*}
c = \frac{500\ \textrm{J}}{m_{Cu} \Delta T } = \frac{500\ \textrm{J}}{0.2\ \textrm{kg} \times 6.5^{\circ}\textrm{C} } = 385\ \frac{\textrm{J}}{ \textrm{kg.} ^{\circ}\textrm{C}}.
\end{equation*}