1. Practice with Dot Product of Unit Vectors.
Using \(\vec A = A_x \hat i + A_y \hat j + A_z \hat k\text{,}\) prove that \(\vec A \cdot \vec A = A_x^2 + A_y^2 + A_z^2\text{.}\)
Hint.
Expand
Answer.
N/A
Solution.
We display the calculation for \(x \) in detail and infer those for \(y \) and \(z \) from the symmetry.
\begin{align*}
\vec A \cdot \vec A \amp =(A_x \hat i + A_y \hat j + A_z \hat k)\cdot (A_x \hat i + A_y \hat j + A_z \hat k) \\
\amp = A_x \left( A_x \hat i\cdot \hat i + A_y \hat i \cdot \hat j + A_z \hat i \cdot \hat k \right) + (x \rightarrow y) + (x \rightarrow z) \\
\amp = A_x \left( A_x \times 1 + A_y \times 0 + A_z \times 0 \right) + (x \rightarrow y) + (x \rightarrow z) \\
\amp = A_x^2 + (x \rightarrow y) + (x \rightarrow z) \\
\amp = A_x^2 + A_y^2 + A_z^2.
\end{align*}