From the given description we have
\begin{align*}
\amp r_\text{min} = R_E + 1.5\times 10^6\ \text{m} = 6.87\times 10^{6}\ \text{m}.\\
\amp r_\text{max} = R_E + 8.0\times 10^6\ \text{m} = 14.37\times 10^{6}\ \text{m}.
\end{align*}
The energy of the satellite in an elliptical orbit is given in terms of the semi-major axis. Let \(M\) be the mass of the Earth.
\begin{equation*}
E = -\frac{G_N M m}{r_\text{max} + r_\text{min}}
\end{equation*}
Since the mass of the satellite is not given in the problem, let us write this for per unit mass.
\begin{equation*}
\frac{E}{m} = -\frac{G_N M }{r_\text{max} + r_\text{min}} = -1.87\times 10^7\ \text{J/kg}.
\end{equation*}
Equating this to the sum of the kinetic and potential energies when at the closest point gives, again writing per unit mass,
\begin{equation*}
\frac{1}{2} v^2 - \frac{G_N M}{r_\text{min}} = -1.87\times 10^7,
\end{equation*}
which can be solved for \(v\) giving
\begin{equation*}
v = 8,870\ \text{m/s}.
\end{equation*}
Now, the speed increases by 10\%. The new speed \(v'\) will be
\begin{equation*}
v' = 1.1 \times 8870 = 9,760\ \text{m/s}.
\end{equation*}
Therefore we have per unit mass
\begin{align*}
\text{new energy}\ \amp =\ \text{old energy} - \text{old KE}
+ \text{new KE}\\
\amp = -1.87\times 10^7 - \frac{1}{2} \times 8870^2+ \frac{1}{2} \times 9,760^2 \\
\amp = -1.04 \times 10^7\ \text{J/kg}.
\end{align*}
But the satellite will still have the same \(r_\text{min}\) given by \(6.87\times 10^{6}\text{ m}\text{.}\) With this new energy and the \(r_\text{min}\) we can deduce the eccentricity \(e_\text{new}\) of the new orbit. From the eccentricity and \(r_\text{min}\) we can calculate the new \(r_\text{max}^{new}\text{.}\) Let us implement this procedure. From
\begin{equation*}
\frac{r_\text{min}}{1-e} = \frac{G_N M m}{2E},
\end{equation*}
we obtain
\begin{equation*}
e = 1 + \frac{2E r_\text{min}}{G_N M m } = 0.641.
\end{equation*}
The new \(r_\text{max}\) will be
\begin{equation*}
r_\text{max}^{new} = \left( \frac{1+e_\text{new}}{1-e_\text{new}}\right) r_\text{min} = 3.14\times 10^7\ \text{m}.
\end{equation*}
We now subtract the radius of the Earth to get the new altitude \(H_\text{new}\text{.}\)
\begin{equation*}
H_\text{new} = r_\text{max}^{new} -R_E = 2.5\times 10^7\ \text{m}.
\end{equation*}