Using Snell’s law at A we obtain angle \(\angle\)BAC to be:
\begin{equation*}
\angle\textrm{BAC} = \sin^{-1}\left(\frac{\sin 30^{\circ}}{1.5} \right) = 19.5^{\circ}.
\end{equation*}
Since \(\triangle\text{BEC}\) in the right angled triangle \(\angle\text{BEC}\) is \(40^{\circ}\) because the side CE is parallel to the base, angle \(\angle\text{BCA}\) = \(90^{\circ}\) + \(40^{\circ}\) = \(130^{\circ}\text{.}\) In triangle \(\triangle\text{ACB}\text{,}\) angle \(\angle\text{ABC}\) = \(180^{\circ}\) - \(130^{\circ}\) - \(19.5^{\circ}\) = \(30.5^{\circ}\text{.}\) This is the angle of incidence at the second interface. Now applying Snell’s law at B, we obtain angle \(\angle\text{N}_2\text{BQ}\) to be:
\begin{equation*}
\angle\textrm{N}_2\textrm{BQ} = \sin^{-1}\left(1.5\times \sin 30.5^{\circ}\right) = 49.6^{\circ}
\end{equation*}
In rectangle ADBC, we know the following angles.
\begin{equation*}
\angle \textrm{DAC} = 30^{\circ}, \ \angle \textrm{BCA} = 130^{\circ},\ \angle \textrm{CBD} = 49.6^{\circ}.
\end{equation*}
Therefore, we find the angle \(\angle\text{ADB}\) to be
\begin{equation*}
\angle \textrm{ADB} = 360^{\circ} - 30^{\circ} - 130^{\circ} - 49.6^{\circ} = 150.4^{\circ}.
\end{equation*}
Hence the angle of deviation \(\angle\text{RDQ}\) is equal to \(180^{\circ} - 150.4^{\circ} = 29.6^{\circ}\text{.}\)