1. Deciding Type of Damped Harmonic Oscillator.
Decide what type of damping is in the following oscillators.
\begin{align*}
\amp (a)\ \ m=0.2\text{ kg},\ k=10\text{ N/m},\ b=6\text{ kg/s}, \\
\amp (b)\ \ m=0.2\text{ kg},\ k=20\text{ N/m},\ b=8\text{ kg/s}, \\
\amp (c)\ \ m=0.8\text{ kg},\ k=32\text{ N/m},\ b=8\text{ kg/s}, \\
\amp (d)\ \ m=0.8\text{ kg},\ k=80\text{ N/m},\ b=16\text{ kg/s},
\end{align*}
Hint.
(a)-(d) First work out the effective parameters \(\omega\) and \(\gamma\text{.}\)
Answer.
(a) Overdamped, (b) Overdamped, (c) Underdamped, (d) Critically damped.
Solution 1. (a)
Let us first find the two effective parameters.
\begin{align*}
\omega \amp = \sqrt{\dfrac{k}{m}} = \sqrt{\dfrac{10}{0.2}} = 7.07\text{ sec}^{-1}. \\
\gamma \amp = \dfrac{b}{m} = \dfrac{6}{0.2} = 30\text{ sec}^{-1}.
\end{align*}
Since \(\omega \lt \gamma/2\text{,}\) the oscillator is overdamped.
Solution 2. (b)
Let us first find the two effective parameters.
\begin{align*}
\omega \amp = \sqrt{\dfrac{k}{m}} = \sqrt{\dfrac{20}{0.2}} = 10.0\text{ sec}^{-1}. \\
\gamma \amp = \dfrac{b}{m} = \dfrac{8}{0.2} = 40\text{ sec}^{-1}.
\end{align*}
Since \(\omega \lt \gamma/2\text{,}\) the oscillator is overdamped.
Solution 3. (c)
Let us first find the two effective parameters.
\begin{align*}
\omega \amp = \sqrt{\dfrac{k}{m}} = \sqrt{\dfrac{32}{0.8}} = 6.32\text{ sec}^{-1}. \\
\gamma \amp = \dfrac{b}{m} = \dfrac{8}{0.8} = 10\text{ sec}^{-1}.
\end{align*}
Since \(\omega \gt \gamma/2\text{,}\) the oscillator is underdamped.
Solution 4. (d)
Let us first find the two effective parameters.
\begin{align*}
\omega \amp = \sqrt{\dfrac{k}{m}} = \sqrt{\dfrac{80}{0.8}} = 10.0\text{ sec}^{-1}. \\
\gamma \amp = \dfrac{b}{m} = \dfrac{16}{0.8} = 20\text{ sec}^{-1}.
\end{align*}
Since \(\omega = \gamma/2\text{,}\) the oscillator is critically damped.